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ABSTRACT

Cellular networks are becoming ever more sophisticated and over-

crowded, imposing the most delay, jitter, and throughput damage

to end-to-end network flows in today’s internet. We therefore ar-

gue for fine-grained mobile endpoint-based wireless measurements

to inform a precise congestion control algorithm through a well-

defined API to the mobile’s cellular physical layer. Our proposed

congestion control algorithm is based on Physical-Layer Bandwidth

measurements taken at the Endpoint (PBE-CC), and captures the

latest 5G New Radio innovations that increase wireless capacity,

yet create abrupt rises and falls in available wireless capacity that

the PBE-CC sender can react to precisely and rapidly. We imple-

ment a proof-of-concept prototype of the PBEmeasurement module

on software-defined radios and the PBE sender and receiver in C.

An extensive performance evaluation compares PBE-CC head to

head against the cellular-aware and wireless-oblivious congestion

control protocols proposed in the research community and in de-

ployment, in mobile and static mobile scenarios, and over busy and

idle networks. Results show 6.3% higher average throughput than

BBR, while simultaneously reducing 95th percentile delay by 1.8×.
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1 INTRODUCTION

Most of today’s downlink end-to-end data flows terminate at a

cellular last hop to a mobile endpoint, where they encounter the

most delay, variations in delay, loss of their constituent packets,
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and limits on their bandwidth. With the increasingly sophisticated

design of today’s and tomorrow’s cellular networks in mind, this

paper argues that it is actually the endpoints that are the entities

best positioned to measure the congestion state of an end-to-end

connection. We further argue that the physical layer of the mobile

endpoint ought to measure the congestion state of the wireless

last hop, and feed these very fine-grained measurements up to the

transport layer and applications through a well-defined API. This

position follows from three challenges that all congestion control

algorithms face when they operate in today’s wireless networks.

First, wireless is fundamentally a shared medium. This means

that when a user’s flow commences or finishes, other users associ-

ated with the same cell tower experience an abrupt drop or rise in

available wireless capacity that takes time to be reflected in the flow

of acknowledgements that today’s ack-based congestion control

protocols send back to the sender [10, 43, 49]. Second, in recent

years, to achieve high throughput and low end-to-end queuing de-

lay, senders must now swiftly react to other abrupt capacity changes

in the wireless cellular link that neither the sender nor even the cell

tower may directly observe. One reason behind this change is that

the newest cellular standards, such as LTE-Advance [2] and 5G New

Radio [1] aggressively exploit a wireless diversity technique called

carrier aggregation to increase wireless capacity, in which the cellu-

lar network aggregates the capacity from two or more cellular base

stations, making that aggregate capacity available to a single user.

When the cellular network adds or removes base stations participat-

ing in a user’s aggregated capacity, the wireless capacity available

to each user abruptly changes, accordingly. Wireless-aware con-

gestion control systems centered on a single base station, such as

Accel-Brake Control (ABC) [17, 18] require non-trivial extensions

to share state across cell sites when carrier aggregation is enabled.

Finally, wireless channel quality is inherently highly dynamic, due

to, e.g., user mobility, multipath propagation, and interference from

neighboring cell towers. These factors change the wireless data

rate that a particular user’s cellular link supports over a time scale

known as the wireless channel coherence time, which can be as

small as milliseconds in the case of vehicular-speed mobility. In

the event of a handover between cell towers, ABC would need to

migrate state, which is not considered in its design.

Further, the foregoing factors interact, exacerbating their effect.

Due to carrier aggregation, an end-to-end connection experiences

fluctuation due to the dynamics of all its aggregated cells, typically

fewer (two to four) than can offer a smoothing of capacity due to

statistical multiplexing.

While both base station and the mobile endpoint are able to

observe these fluctuations, it is only the latter that has fully up-to-

date state on the wireless connection to each and every base station

the mobile connects with. In the current design of the cellular
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physical layer, however, mobile users decode only their own channel

allocation messages, and so cannot track other users’ channel usage

and thus identify idle wireless capacity.

This paper introduces a new congestion control algorithm based

on Physical-Layer Bandwidth measurements, taken at the mobile

Endpoint (PBE-CC). At a high level, PBE-CC is a cross-layer design

consisting of two modules. Our first module comprises an end-to-

end congestion control algorithm loosely based on TCP BBR [10],

but with senders modified to leverage precise congestion control

techniques [25] when possible. We harness our end-to-end conges-

tion control to our secondmodule, a wireless physical-layer capacity

measurement module for mobile devices. Our key innovation is

to enable highly accurate capacity measurements of the wireless

cellular link, which track its variations at millisecond-timescale

granularity, thus enabling significantly more precise control over

senders’ rates as they attempt to match their sending rate to the

available wireless capacity, should the bottleneck capacity be the

wireless link itself. In the event of an increase in wireless capacity,

this allows PBE-CC to be rapidly responsive, detecting the amount

of newly-emerged idle wireless capacity and prompting the sender

to increase its offered rate accordingly. In the event of a decrease

in wireless capacity, this allows PBE-CC senders to rapidly quench

their sending rate, thus avoiding queuing delays, as our evaluation

demonstrates in drill-down experiments (§6).

Our evaluation shows that most of the time, the cellular link is

indeed the bottleneck in the end-to-end path, as many congestion

control protocols [17, 43, 49] assume. PBE-CC makes the same

initial assumption, leveraging the above wireless-aware precise

congestion control functionality to more accurately control the

sender’s pacing, while also taking into account the number of users

sharing the wireless link, so that each PBE-CC sender can offer a

load that results in an overall-fair distribution of wireless capacity

between those users. Further refinements allow PBE-CC senders to

gently approach this target at the connection start, so that other

senders have time to react and adjust accordingly. However, if PBE-

CC detects an increase in the one-way delay of its packets that its

wireless capacity forecasts do not anticipate, this triggers a BBR-

like mechanism to probe the bottleneck rate based on the pace of

acknowledgement packets received by the PBE-CC sender.

We have implemented the PBE-CC congestion control module

in 814 lines of user space C++ code. Mobile telephone wireless

front ends should decode the necessary frequency bands in order

to implement PBE-CC’s physical-layer wireless capacity measure-

ment module, but their (closed-source) firmware does not offer this

functionality, and so we emulate the missing firmware function-

ality using the USRP software-defined radio in our 3,317-LoC C

implementation.

Our performance evaluation uses Pantheon [48] to test PBE-CC

head-to-head against BBR and CUBIC [19], leading congestion con-

trol algorithms, as well as recent congestion control algorithms

for cellular [43, 49], and other recently-proposed algorithms such

as Copa [6], PCC [11] and PCC-Vivace [12]. Our experiments be-

gin with measurements of delay and throughput, under stationary

user-device conditions, both indoors and outdoors, and both dur-

ing busy and quiet hours. Further experiments evaluate the same

under mobile user-device conditions, “controlled” competition for

Table 1: Summary throughput speedup and delay reduction

performance comparison vs. BBR, Verus, and Copa (aver-

aged over 15 idle cellular links and 25 busy links).

PBE-CC delay reduction
Scheme

PBE-CC

tput. speedup 95th. pctl. avg. delay

Busy 1.04× 1.54× 1.39×
BBR

Idle 1.10× 2.07× 1.84×

Busy 1.25× 3.97× 2.53×
Verus

Idle 2.01× 3.44× 2.67×

Busy 10.35× 0.80× 0.80×
Copa

Idle 12.94× 0.79× 0.82×

the wireless network capacity (that we introduce ourselves in a

known manner), and “uncontrolled” competition from background

traffic of other users at various times of the day. For each competing

scheme, we report (individually) all throughput and delay order sta-

tistics, measured across 100-millisecond time windows, as well as

average case results for these experiments. Table 1 summarizes our

performance results: on average, PBE-CC achieves a 6.3% higher

average throughput than BBR, while simultaneously reducing 95th

percentile delay by a factor of 1.8× and average delay by a factor

of 1.6×. Against Verus, an algorithm specially designed for cellular

networks, PBE-CC achieves significant gains in both throughput

and delay reduction, and against the much-slower Copa, PBE-CC

achieves an approximate 11× throughput improvement while pay-

ing a relative 20% latency penalty. We also evaluate multi-user

fairness, RTT fairness and TCP friendliness of PBE-CC in §6.4.

2 RELATEDWORK

End-to-end congestion control. Loss-based algorithms [15, 19,

23, 39] achieve high throughput, but often introduce excessive

delay, while delay-based algorithms [6, 8, 41] are prone to ACK

delay, ACK compression, or network jitter, and thus often result in

network capacity under-utilization. Moreover, it is widely known

that these methods achieve poor capacity utilization when compet-

ing with concurrent loss-based algorithms [6, 39]. Other proposals

use learned algorithms to optimize specific objective functions,

to generate better congestion control actions than human crafted

rules [5, 11, 12, 38, 42]. As we show in our evaluation (§6), online

learning frequently converges to solutions that result in significant

network under-utilization. BBR [10] targets convergence to Klein-

rock’s optimal operating point, i.e., simultaneously maximizing

throughput and minimizing delay, based on estimates of bottle-

neck bandwidth and round trip propagation time. BBR achieves

the best performance among all the algorithms we test, but still

under-utilizes the network and introduces excessive delay because

of its capacity estimates are coarse-grained.

End-to-end congestion control for cellular networks. Some

prior work treats the cellular link as a black box and makes use

of throughput, packet delay and loss statistics to infer link capac-

ity [21]. Raven [29] reduces interactive video latency by sending

redundant data over multiple paths (Wi-Fi and cellular), using Mul-

tipath TCP [44]. PROTEUS [47] collects current throughput, loss,

452



Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
Fr
eq
ue
nc
y

Time

Subframes
PRB

Transport
block (TB)

slots

Figure 1: PRBs inside a sub-

frame can be allocated to

multiple users. Allocation

in two slots are the same

(represented using colors).

0 0.5 1 1.5 2 2.5 3
Time (s)

0

20

40

60

80

100

A
llo

ca
te

d 
PR

B
s

0

50

100

150

Pa
ck

et
 d

el
ay

 (m
s)PRB of secondary cell

PRB of primary cell
Packet delay

Secondary cell activated

Steady state 6 Mbit/s

Draining the queue

Building
up queue

Secondary cell de-activated  40Mbit/s

Figure 2: When the offered load of the server

exceeds the maximum capacity of the primary

cell, cellular network activates a secondary cell

for the mobile user to support the high data

rate, and deactivates it if the rate drops.

Retransmission causes 8 delay

Scheduled retransmission after 8 subframes (8 )

Reordering
buffer

UDP/TCP
packets

Transport
block
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buffer until the erroneous block is retransmit-

ted and corrected received (multiple retrans-

missions is possible), introducing a 8ms delay.

and one-way delay, using regression trees to forecast future net-

work performance. PropRate [30] replaces BBR’s periodic band-

width probing with continuous probing that oscillates the send rate

around the estimated receive rate using packet size, and packet

send/receive times. Sprout [43] leverages packet arrival times to

infer the uncertain dynamics of the network path, forecasting link

capacity based on these measurements. Similarly, ExLL [35] mod-

els the relationship between packet arrival patterns and cellular

bandwidth usage to adjust send rate. Instead of attempting to infer

the cellular network dynamics, Verus [49] tries to learn a delay

profile that captures the relationship between target send window

size and perceived end-to-end delay. Purely relying on end-to-end

statistics, above algorithms inevitably suffers from capacity esti-

mation inaccuracies and are sensitive to network dynamics, as we

have demonstrated (§6.3). PBE-CC delivers superior performance

because of its more fine-grained capacity estimation, achieved by

directly measuring the wireless channel.

Cellular-aware congestion control proposals.ABC [17, 18] and

the Draft IETF Mobile Throughput Guidance (MTG) standard [22]

propose modifications of each mobile base station to explicitly com-

municate the best rate to the sender, but do not explicate specifics

in the design of the capacity monitor that is critical for high perfor-

mance. CQIC [32] embarks on a cross-layer design by extracting 3G

link capacity estimates, but still lacks fine granularity. piStream [45]

and CLAW [46] formulate a model that predicts utilized resource

blocks from signal strength measurements. CLAW uses this model

to speed up web browsing workloads, while piStream uses the

model for video workloads, but the authors’ own measurements

show that signal strength’s predictive power is quite limited, while

PBE-CC decodes the control channel metadata directly, resulting

in precise bandwidth utilization data that are not estimates.

Cellular PHY-layermonitoring tools.QXDM [36] andMobileIn-

sight [31] extract control messages for a single mobile user, but

cannot provide net information on the cell tower’s capacity occu-

pancy, as PBE-CC does. BurstTracker [7] locates the bottleneck of

an end-to-end connection. LTEye [28] and OWL [9] decode control

messages, but do not work with carrier aggregation (§3) and later

advanced MIMO standards as PBE-CC does. All the foregoing tools

stop short of a congestion control algorithm design.

3 LTE/5G NEW RADIO PRIMER

In this section, we introduce the relevant design of LTE’s MAC and

physical layer, with a focus on frequency division duplexing (FDD),

the mode cellular operators use most widely. LTE adopts OFDMA,

dividing the available wireless frequency bandwidth into 180 KHz

chunks and time into 0.5 millisecond slots, as shown in Figure 1.

The smallest time-frequency block (180 KHz and 0.5 ms) is called a

physical resource block (PRB), which is the smallest unit that can

be allocated to a user. LTE groups two slots into a one-millisecond

subframe. The PRB allocation of two slots inside one subframe is the

same. The data transmitted over one subframe is called one transport

block (TB). The size of one TB varies, depending on the number of

allocated PRBs and the wireless physical data rate of the user. The

base station informs the mobile user of its bandwidth allocation

(the amount and position of allocated PRBs) and wireless bit rate,

including themodulation and coding scheme (MCS) and the number

of spatial streams, through a control message transmitted over a

physical control channel [3]. A mobile user decodes the control

message of a subframe before decoding the TB inside it.

Carrier aggregation. By default, the base station delivers data to

a mobile user via a primary component carrier (CC), or primary cell.

When there is a huge amount of data to be delivered to the user, the

base station activates a secondary cell to add capacity. The cellular

network maintains a list of aggregated cells for each user and will

activate them sequentially if necessary. The aggregated cells are

deactivated if and when the user does not utilize the extra capacity.

An example of the carrier activation and deactivation process is

shown in Figure 2. A sender first sends data to a mobile user with a

fixed offered load of 40 Mbits for two seconds, which exceeds the

maximum capacity of the primary cell, so it causes packet buffering

at this cell,1 even when all the bandwidth are allocated for this

user. The cellular network detects such a high-data-rate user and

activates a secondary cell to help deliver the data to this user, at

0.13 seconds. Since 40 Mbit/s is below the aggregated capacity of

the primary and secondary cell, the cellular network drains the

built queue within 0.6 seconds, as shown in Figure 2. The sender

reduces its sending rate to 6 Mbit/s, which is below the capacity of

the primary cell, so the secondary cell is deactivated.

Cellular retransmission and reordering. The cellular network

1We note that packet buffering at the base station is not a prerequisite for activating
secondary cells. The cellular network activates another cell for a user as long as such
a user is consuming a large fraction of the bandwidth of the serving cell(s).
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Figure 4: An overview of PBE-CC congestion control. The mobile clients decode the cellular control channel, which contains

detailed information about the base station’s available wireless capacity. PBE-CC senders control their send rate based on the

estimated bottleneck capacity that the mobile user explicitly sends back, or based on the presence of ACKs from the receiver.

retransmits an erroneous transport block after eight subframes

(milliseconds) of the original transmission, as shown in Figure 3. To

guarantee in order delivery, the mobile user buffers all the transport

blocks received in subframes between the original transmission and

retransmission of the erroneous transport block (supposing they

are received correctly) in a reordering buffer. When the retrans-

mission succeeds, the mobile user report all the buffered transport

blocks together with the retransmitted transport block to upper

layers where the transport layer packets inside the transport blocks

are extracted. As a result, the retransmission introduces a eight

millisecond delay to the transport layer packets inside the erro-

neous transport block and the buffering and reordering operations

at the receiver side introduces a decreasing delay (from seven to

zero milliseconds) to the packets inside the following transport

blocks. If the retransmission fails, the cellular network repeats the

retransmission at most three times, introducing a latency penalty

equal to a multiple (smaller than three) of eight milliseconds.

4 DESIGN

PBE-CC is a rate based, end-to-end congestion control algorithm

for flows traversing cellular networks and terminating at mobile

devices. PBE-CC mobile clients decode the cellular physical con-

trol channel, which contains detailed information about the base

station’s available wireless capacity. From this, the mobile user is

able to estimate this quantity accurately, at millisecond time granu-

larity. Depending on the location of the bottleneck link, PBE-CC

senders control their send rate based on the estimated bottleneck

capacity that the mobile user explicitly sends back, or based on the

presence of ACKs from the receiver, as shown in Figure 4. Using its

fine-grained capacity estimates, when the bottleneck is the wireless

hop, PBE-CC can immediately increase its send rate to grab new

available capacity without causing any congestion, and decrease

its send rate accordingly, if competition with other mobile users or

the wireless channel reduces wireless capacity.

As traffic patterns are highly dynamic, end-to-end connections

face two possible network states, depending on the relative capaci-

ties of the bottleneck link in the Internet, and the cellular link. Most

of the time, connections are in what we term a wireless-bottleneck

state where the wireless cellular link is the bottleneck of the whole

end-to-end connection. In this state, the PBE-CC mobile user can

estimate and track the bottleneck capacity of the whole connec-

tion at millisecond granularity by decoding the cellular physical

control channel (§4.2.1). The PBE-CC sender matches its send rate

with the bottleneck capacity that the mobile user explicitly feeds

back, almost exactly utilizing capacity and at the same time caus-

ing minimal packet buffering in the network. On the other hand,

the connection is in an Internet-bottleneck state if the capacity of

the Internet bottleneck is smaller than the capacity of the wireless

cellular link. PBE-CC then switches to a cellular-tailored BBR-like

congestion control strategy, to compete fairly with other flows that

share the Internet bottleneck for a fair share of the bottleneck ca-

pacity (§4.2.3). PBE-CC tracks possible changes in these two states,

controlling the sender’s actions accordingly.

Kleinrock has proven that the operating point—maximizing de-

livered bandwidth while minimizing delay—is optimal for both

individual connections and the network as a whole [26, 27]. The

operating point is characterized by the insight that one should keep

the pipe only just full. PBE-CC shares the same goal as BBR, which

is to fill the pipe and minimize the buffering inside the network.

PBE-CC limits the amount of inflight data to the bandwidth-delay

product (BDP) calculated using estimated round-trip propagation

time RTprop and bottleneck capacity with a congestion window,

as shown in Figure 4, so PBE-CC senders often do not send exces-

sive packets even when the feedback from mobile user is delayed,

minimizing queuing in the network, for very low latency, as our

experimental evaluation later demonstrates (§6).

4.1 Connection Start: Linear Rate Increase

On connection start, a PBE-CC sender executes a linear rate increase

in order to approach a fair-share of the bottleneck capacity. By

decoding the control channel, each PBE-CC user knows the number

of other users sharing the cell bandwidth, as shown in Figure 5. PBE-

CC therefore calculates expected fair-share bandwidth (in units of

PRBs) 𝑃exp using the total PRBs available in the cell 𝑃cell and the

number of active users 𝑁 (including the mobile itself):

𝑃exp = 𝑃cell/𝑁 . (1)

The user then estimates its expected fair-share send rate 𝐶𝑓 (in

units of bits per subframe) as:

𝐶𝑓 = 𝑅𝑤 · 𝑃exp, (2)

where 𝑅𝑤 is the wireless physical data rate (with units of bits per

PRB) calculated using the number of spatial streams together with

the coding and modulation rate for each stream.

The PBE-CC sender linearly increases its send rate from zero to

the fair-share send rate 𝐶𝑓 in three RTTs. The mobile user updates

𝐶𝑓 every millisecond, and sends the calculated rate back to the

server in each acknowledgement. PBE-CC’s linear increase pre-

vents bursty traffic and leaves time for the cell tower and the other
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users sharing that tower to react to the increased traffic. The cell

tower reacts to the mobile user’s increasing send rate by propor-

tionally allocating more bandwidth, which results in less bandwidth

allocated to other users. Another PBE-CC user immediately detects

such a decrease in its allocated bandwidth and signals its sender to

lower its send rate accordingly. Eventually, all PBE-CC’s users tend

to achieve equilibrium with an equally-shared bandwidth. When

two or more component carriers are active during the fair-share

approaching state, we calculate target send rate separately for each

aggregated cell, and sum them up as 𝐶𝑓 . When more carriers are

activated during congestion avoidance (§4.2), PBE-CC restarts this

fair-share approaching process.

The user ends linear rate increase and enters congestion avoid-

ancewhen it achieves its fair-share sending rate𝐶𝑓 . If the bottleneck

of the connection is inside the Internet, rate 𝐶𝑓 is not achievable,

so the achieved throughput at the cell tower stays at a rate below

𝐶𝑓 and end-to-end packet delay increases with increasing sender

offered load. When the mobile user detects that the receiving rate

stops increasing for one RTprop, while the oneway packet delay in-

creases monotonically with an increasing offered load, it also ends

the linear rate increase phase and switches to our cellular-tailored

BBR to handle congestion in the Internet (§4.2.3).

4.2 Steady State: Congestion Avoidance

We now present the design of PBE-CC’s congestion avoidance algo-

rithm. When the connection is in the wireless bottleneck state, PBE-

CC senders match their send rate to estimated wireless capacity

(§4.2.1). Similar to connection startup, PBE-CC identifies a possible

transition from a wireless-bottleneck to Internet-bottleneck state

(§4.2.2), and if this happens, switches to to a cellular-tailored BBR

(§4.2.3) to compete fairly with flows at the bottleneck.

4.2.1 Wireless Bottleneck State. Here a PBE-CC mobile user esti-

mates the available cellular wireless capacity 𝐶𝑝 (in units of bits

per subframe) as

𝐶𝑝 =
𝑁cell∑
𝑖=1

(
𝑅𝑤,𝑖 ·

(
𝑃𝑎,𝑖 +

1

𝑁𝑖
𝑃idle,𝑖

))
(3)

where 𝑁cell is the number of activated cells for this user, 𝑃𝑎,𝑖 is
the number of PRBs allocated for this user in the 𝑖th cell, 𝑁𝑖 is the

number of mobile users in the 𝑖th cell, and 𝑃idle,𝑖 represents the
number of idle PRBs in the 𝑖th cell:

𝑃idle,𝑖 = 𝑃cell,𝑖 −
𝑁𝑖∑
𝑗=1

𝑃
𝑗
𝑎,𝑖 (4)

where 𝑃
𝑗
𝑎,𝑖 represents the allocated PRB for user 𝑗 of the 𝑖th cell.

To smooth the estimation results, we average the calculated 𝑅𝑤,𝑖 ,

𝑃idle,𝑖 and 𝑃𝑎,𝑖 from the most recent RTprop subframes (e.g., we

average the above parameters over the most recent 40 subframes if

the connection RTT is 40 ms).

To interpret estimated capacity𝐶𝑝 , we consider each component

of Eqn. 3. First, the wireless physical layer data rate 𝑅𝑤 enables the

mobile user to track capacity variations caused by varying channel

quality. Second, the mobile user reacts to the appearance of new

users by tracking the number of PRBs allocated for itself (𝑃𝑎). For
example, as shown in Figure 5, 𝑃𝑎 for User 1 decreases when a

Index of subframes (1

B
an

dw
id

th

1 2 3 4 5 6 7 8 10 11 12 13

TimeUser 1 User 2 IdleUser 3

9

Figure 5: One mobile user tracks the number of PRBs allo-

cated for itself, for other mobile users and that are idle.

new user, i.e., User 2, starts receiving traffic. On detection of fewer

allocated PRBs, User 1’s sender lowers its send rate to match the

decreasing capacity estimated using Eqn. 3.

When idle PRBs 𝑃idle appear in a cell for a connection that is

wirelessly bottlenecked, all PBE-CC clients immediately detect them

by checking the decoded control message, and inform their senders

to increase their rates to grab a fair-share portion of the idle PRBs,

i.e., 𝑃idle/𝑁 . This may happen in several cases: first, idle PRBs

appear when a sender finishes a flow. As shown in the example

of Figure 5, after User 2’s flow finishes in subframe six, Users 1

and 3 immediately observe idle PRBs in subframe seven and then

share the available PRBs equally in subframe eight. Second, idle

PRBs also appear when the data rate of a user’s flow decreases, e.g.,

Subframe 9 in Figure 5, which could be caused by, e.g., congestion

in the Internet, the application itself, or a shift of traffic from one

cell to another aggregated cell by the cellular network. In this case,

all other users immediately detect and occupy their fair share of

the newly-idle PRBs. Other users share 1/𝑁 of the idle PRBs with

User 3, whose data rate is limited and thus is not able to grab more

PRBs. As a result, if we define the number of idle PRBs in Subframe 9

as 𝑃 ′, there will be 𝑃 ′/𝑁 left idle in Subframe 10. Similarly, other

users detect these idle PRBs in Subframe 11, but still only occupy

their fair share portion, so 𝑃 ′/𝑁 2 will be left idle in Subframe 12.

The network converges to a state where all other users other than

the User 2 grab all the idle bandwidth.
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Figure 6: The percentage of capacity used for transport block

retransmission and transmission of protocol overhead is

given in (a). The relationship between transport block error

rate and transport block size is given in (b).

Cross-layer bit rate translationThe capacities𝐶𝑓 and𝐶𝑝 (Eqns. 2

and 3) are wireless physical-layer capacities differing from trans-

port-layer data rates due to MAC-layer retransmissions and (con-

stant) protocol header overhead. PBE-CC therefore needs to trans-

form the estimated physical-layer capacity 𝐶𝑝 to a transport layer

goodput 𝐶𝑡 , and feedback 𝐶𝑡 back to the server to set its send rate.
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The cell indicates a retransmitted transport block using a new-data-

indicator, so we can separately measure retransmission overhead

and protocol overhead. Figure 6(a) plots the measured overhead

at two different locations and varying sender offered loads. The

probability of a TB error determines retransmission overhead: if

the bit error rate (BER) of each bit inside one TB is 𝑝 and bit errors

are i.i.d., the TB error rate is 1 − (1 − 𝑝)𝐿 , where 𝐿 is the TB size.

We plot in Figure 6(b) theoretical TB error rate (for 𝑝 = 5 × 10−6,

3 × 10−6, and 1 × 10−6) and empirical TB error rate, noting a good

fit between experimental data and theory. Based on these results,

PBE-CC models the relationship between 𝐶𝑝 and 𝐶𝑡 as

𝐶𝑝 = 𝐶𝑡 +𝐶𝑡 ·
(
1 − (1 − 𝑝)𝐿

)
+ 𝛾 ·𝐶𝑝 (5)

where 𝛾 = 6.8% is the protocol overhead. When one user takes

its PBE-CC-allocated fair-share capacity (Eqn. 3), the TB size 𝐿
(number of bits in one subframe, i.e., 10−3 s), is 𝐿 = 𝐶𝑡 · 10

−3. We

estimate 𝑝 using measured signal to interference noise ratio (SINR),

then by solving Eq. 5 given a measured physical layer capacity 𝐶𝑝 ,

we estimate transport layer goodput𝐶𝑡 . To speed up the calculation,
PBE-CC uses a look-up table to store the transformation.

Handling control traffic. PBE-CC aims to fairly share wireless

bandwidth between all active users, but our experimental results

shows that significant amount of detected users are active not for

data, but rather to update network parameters shared by both base

station and mobile, e.g., the periods of various timers, list of ag-

gregated cells, and many pricing and security-related parameters.

Because of such users, the number of detected active users at each

time point could be large. For example, we plot the distribution of

the number of detected active users in a 40 ms interval, across a

5 hour interval, measured from a busy cell tower, in Figure 7(b).

On average, we observe on average 15.8 and maximum 28 active

users, in those 40 ms interval. PBE-CC excludes those users in its

fair-share capacity calculation, reverting to the cell tower to allo-

cate small amounts of bandwidth for these users and then reacting

to that allocation by tracking the decrease of allocated bandwidth

(𝑃𝑎 in Eqn. 3) and lowering send rate by that amount. Our key

observation is that the control traffic occupies a small number of

PRBs and only active for small amount of time. We plot the distri-

bution of the average occupied PRBs and active time (subframes)

of all detected active users in Figure 7(b). We see that 68.2% of

users occupies exactly four PRBs and is active for exactly one sub-

frame, among which 95% of users are receiving control traffic from

the base station. Therefore, the PBE-CC monitor filters users that

are only active for parameter updating, based on thresholding the

active time duration (subframes) and allocated bandwidth (PRBs)

(𝑇𝑎 > 1, 𝑃a > 4), after which the number of detected active users

decreases significantly—the average number of detected user inside

a 40 ms interval decreases from 15 to 1.3, and we only observe at

most seven active users competing for the bandwidth simultane-

ously, as shown in Figure 7(a). We set the 𝑁 in Eqns. 2 and 3 to the

number of active users we detect after applying the threshold. The

calculation of idle PRBs in Eqn. 4, however, takes every identified

user into account.

4.2.2 Switching between Bottleneck States. When sender offered

load exceeds the capacity of the Internet bottleneck, packet queuing

induces PBE-CC to switch from the wireless bottleneck state to
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Figure 7: Number of mobile users exchanging data with the

base station (a), and activity length𝑇𝑎 and average consumed

PRBs 𝑃ave of each detected mobile user (b).

the Internet bottleneck state. PBE-CC triggers a switch when the

instantaneous one-way packet delay exceeds a threshold. Theo-

retically, we should set the threshold to the one way propagation

delay between the server and clients (𝐷th = 𝐷prop). PBE-CC esti-

mates𝐷prop as the minimum delay observed in a 10-second window,

evoking BBR’s round-trip propagation delay estimation method.

PBE-CC also updates the true 𝐷prop by draining the buffer as BBR

does, if estimated packet delay maintains constant for 10 seconds.
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Figure 8: Higher send rates (sub-caption label) result in a

higher probability of transport block errors, so more pack-

ets encounter eight millisecond retransmission delays.

The theoretical threshold, however, works poorly in practice

because of the reordering operation. We observe that the mobile

user frequently buffers received packets in its reorder buffer (§3),

especially when offered load from the sender is high, causing sig-

nificant fluctuations of packet delay. To demonstrate such an effect,

we plot the measured one way delay at a mobile user under dif-

ferent sender offered loads in Figure 8. We see that when offered

load is low (6 Mbit/s), only a small portion of the received pack-

ets are retransmitted, as shown in Figure 8(a). We also observe

an approximate three millisecond network jitter introduced to the

packet delay. When the offered load increases, the transport block

error rate increases accordingly, as we have discussed in §4.2.1.

Consequently, the mobile user buffers more and more packets in its

reorder buffer, introducing an multiple of eight ms retransmission

delay to a increasing number of received packets, as shown in Fig-

ure 8(b) and 8(c). We note that, the minimum delay still captures the

one way propagation delay, as there always are packets received

correctly without retransmission and directly without buffering at

the reorder buffer, e.g., the packets inside transport block of the

first subframe in Figure 3.
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Figure 9: BBR adopts a eight-phase cycle to probe the net-

work bandwidth. The length of each phase is set to RTprop.

According to the above analysis, we set the switching thresh-

old to 𝐷th =
(
𝐷prop + 3 · 8 + 3

)
ms, where (3 · 8) ms accounts for

the delay introduced by the three consecutive retransmissions (a

transport block can be retransmitted at most three times [4]) and

3 ms accounts for the network jitter (according to our experimental

results, 94.1% of the time, jitter is ≤ 3 ms). To further mitigate the

impact of greater network jitter and improve robustness, PBE-CC

adds a threshold for the number of consecutive packets with delay

exceeding the delay threshold, set to the number of packets 𝑁pkt

that can be transmitted over six subframes using current data rate:

𝑁pkt = 6 ·𝐶𝑡/MSS (6)

where 𝐶𝑡 is the current transport layer capacity with unit bits per

subframe, and MSS is the maximum segment size. We note that

since our algorithm makes decisions based on relative delay, i.e., the

difference between current propagation delay and the threshold,

instead of the absolute value of the delay, PBE-CC does not require

synchronization between the server and mobile clients.

4.2.3 Internet Bottleneck State. PBE-CC switches to a cellular-tai-

lored BBR to probe a rate that matches the capacity of the bottleneck

link inside the Internet. BBR senders estimate the bottleneck band-

width of the connection (𝐵𝑡𝑙𝐵𝑤 ) as the maximum delivery rate in

recent 10 RTTs, and set their offered rate to 𝑝𝑎𝑐𝑖𝑛𝑔_𝑔𝑎𝑖𝑛 · 𝐵𝑡𝑙𝐵𝑤 .

BBR’s pacing_gain is set to 1.25 to probe possible idle bandwidth,

to 0.75 when draining packets buffered in the previous probing

period, and to one the rest of time. BBR’s ProbeBW state repeats

an eight-phase cycle to probe bandwidth. The length of each phase

is set to RTprop, and the pacing gain in each phase is shown in Fig-

ure 9. PBE-CC directly enters BBR’s ProbeBW state, then follows

the same control logic as BBR to alternate between BBR’s ProbeBW,

ProbeRTT, StartUp, and Drain states.

Wireless-aware, BBR-like probing. PBE-CC probes for a higher

data rate that the Internet bottleneck supports, but also takes into

account the fair-share send rate of the cellular wireless link. We

adapt BBR’s bandwidth probing scheme, changing the probing rate

𝐶probe from a fixed 1.25𝐵𝑡𝑙𝐵𝑤 to

𝐶probe = min
{
1.25𝐵𝑡𝑙𝐵𝑤,𝐶𝑓

}
, (7)

where 𝐶𝑓 is the maximum fair-share capacity of the wireless link

(estimated according to Eqn. 2 and translated to transport layer

capacity according to Eqn. 5 below). The mobile user explicitly

sends𝐶𝑓 back to the sender when an Internet bottleneck is detected.

Similar to BBR, PBE-CC enters a draining phase after the probing

phase to drain any buffered packets.

When PBE-CC detects that the network is in the Internet-bot-

tleneck state, there is already a packet queue formed inside the

network. Therefore, before switching to handle that state, PBE-

CC enters an additional draining phase that lasts for one RTprop.

During the draining phase, PBE-CC sets its send rate to 0.5𝐵𝑡𝑙𝐵𝑤 ,

leaving the remaining capacity of 0.5𝐵𝑡𝑙𝐵𝑤 for the bottleneck link

to drain the packets buffered inside its queue.

Switching back to wireless bottleneck state. If PBE-CC’s send

rate reaches𝐶𝑓 without causing any packet queuing in the network,

i.e., the mobile user observes 𝑁pkt (calculated according to Eqn 6)

consecutive packets with delay smaller than 𝐷th ms are observed

at the mobile user, then PBE-CC exits the Internet-bottleneck state

and re-enters the wireless bottleneck state, staying in that state

until the network is switched back to Internet-bottleneck state.

4.3 Fairness and TCP-friendliness

As it only modifies BBR’s algorithms to be more conservative, PBE-

CC is strictly less aggressive than BBR when competing with flows

sharing the same Internet bottleneck. BBR’s multi-user fairness,

RTT-fairness and TCP-friendliness have been well established in

the literature[20, 33, 37, 40].

In the wireless bottleneck state, multiple competing PBE-CC

mobile clients quickly converge to a equilibrium with fair-share

cellular wireless capacity (as we demonstrate below in §6.4.1), be-

cause each PBE-CC mobile client knows the number of competing

users and their capacity usage in each aggregated cell by decod-

ing the cellular physical control channel, allowing it to explicitly

calculate its fair-share capacity (§4.1) and then guide its sender to

match its sending rate accordingly. In contrast, conventional end-

to-end congestion control algorithms need to probe the fair-share

of bottleneck capacity with a more complicated series of probing

and backoff steps, which is less efficient. PBE-CC also fairly shares

wireless link capacity with existing congestion control algorithms,

e.g., CUBIC and BBR, with the help of cell tower’s fairness policy,

as our experimental evaluation later demonstrates (§6.4.3).

PBE-CC flowswith different propagation delays fairly share wire-

less capacity (as we demonstrate in §6.4.2), because of two reasons,

one from the design of PBE-CC and one from the buffer structure

of base station. First, PBE-CC explicitly calculates the fair-share

capacity, while most conventional congestion control algorithm

adopt additive-increase multiplicative-decrease (AMID) schemes to

probe for the fair share. During the additive increase, the sender of

a flow with smaller propagation delay increases its window faster

than flows with larger delay, resulting in unfairness [19, 34]. Sec-

ond, the base station provides separate buffers for every user, which

prevents large-RTprop connections from dominating the bottleneck

buffer. For example, a BBR connection with a large RTprop calcu-

lates a large BDP and thus injects significant amount of inflight

packets into the network, which queue at the bottleneck buffer and

lower the delivery rate for another BBR flow with a small RTprop

and hence a small number of inflight packets. The separate buffer

at cellular base station isolates the inflight packets from different

flows sharing the wireless link and thus prevents unfairness.

5 IMPLEMENTATION

Programming a mobile phone to decode every control message

transmitted over the control channel requires customization of the

cellular firmware inside the phone. The source code of current

cellular firmware, however, is proprietary to cellular equipment

manufacturers, thus is not accessible. As a proof of concept, we build

an open-source congestion control prototyping platform that sup-

ports control message decoding, bypassing the need to customize
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Figure 10: The architecture of the open-source PBE-CC cel-

lular congestion control prototyping platform (a). The setup

of PBE-CC mobile clients is shown in (b).

firmware. The key component of our platform is an open-source

control channel decoder that uses an off-the-shelf software defined

radio (USRP in our implementation) as the RF front-end to collect

cellular wireless signals, and a PC as the host to decode the control

messages from the collected signals. We start multiple parallel con-

trol channel decoders, each decoding the signal from one cell in the

list of aggregated cells of the mobile user, as shown in Figure 10(a).

OurMessage Fusion module aligns the decoded control messages

from multiple decoders according to their subframe indices, feeding

the aligned messages to our Congestion Control module.

We implement our cellular control channel decoder in 3,300

lines of C code (excluding reused code). We reuse the physical

layer signal processing modules from an open-source LTE library

(srsLTE [16]), i.e., a wireless channel estimator, a demodulator, and

a convolutional decoder. Each decoder decodes the control channel

by searching every possible message position inside the control

channel of one subframe and trying all possible formats at each

location until finding the correct message.2 We implement the

parallel decoding structure using multi-threading, allowing one

PC to decode the control channel of multiple cells simultaneously.

In our test, a six-core PC is able to decode six cell towers while

maintaining CPU usage of each core below 40 percent. We will

open-source our platform to facilitate future cross-layer cellular

congestion control design and prototyping.

We implement a user-space, UDP-based prototype of PBE-CC’s

congestion control algorithm using 874 lines of C++ code (517 on

the mobile client side and 357 at the sender side). The client-side

PBE-CC module takes the decoded control messages as input, and

communicates with the sender side via a commercial mobile phone

tethered with the host PC, as shown in Figure 10(a). When the

PBE-CC mobile client receives a data packet, it estimates the one

way packet propagation delay 𝐷prop (§4.2.2), and feeds back the

estimated capacity. We describe the capacity using an interval in

milliseconds between sending two 1500-byte packets, and represent

it with a 32-bit integer. The PBE-CC client also identifies the current

bottleneck state, notifying the sender via one bit in the ACK. When

the PBE-CC sender receives an ACK, it sets its sending rate to the

capacity indicated therein. The PBE-CC sender also updates its

estimated RTprop and BtlBw with every received ACK, so it can

immediately switch to the cellular-tailored BBR if and when the

bottleneck location changes.

2The 3GPP standard defines 10 formats for control messages [3]. The base station does
not explicitly indicate the format of the message it sends.

6 EVALUATION

In this section, we evaluate the performance of PBE-CC in a com-

mercial cellular network and compare with existing end-to-end

congestion control algorithms.

6.1 Methodology

Content senders. We configure Amazon AWS servers as the PBE-

CC senders. To evaluate PBE-CC’s performance over flows with

significantly different RTT, we setup AWS servers at different con-

tinents, i.e., three in US and one in Singapore.

Mobile clients. Each PBE-CC mobile client is a combination of

multiple USRPs for signal collection, a host PC for control channel

decoding, and a commercial mobile phone for cellular communica-

tion, as shown in Figure 10(b). We use both USRP X310 [14] and

B210 [13] in our implementation. The host PC we use for each

mobile client is a Dell OptiPlex 7060 (Intel Core i7-8700 CPU, 16 GB

RAM, and Ubuntu 16.04). We use various types of mobile phones

that support carrier aggregation in hardware, including a Xiaomi

MIX3, a Redmi 8, and a Samsung S8. The cellular network con-

figures the same primary cell for all three phones, but different

numbers of aggregated cells for each phone, i.e., only one cell for

the Redmi 8, two cells for the MIX3 and three cells for the S8.

Congestion control algorithms to compare. We compare PBE-

CC against seven end-to-end congestion control algorithms, in-

cluding algorithms specially designed for cellular networks like

Sprout [43] and Verus [49], algorithms that have already been in-

cluded inside the official Linux kernel like BBR [10] and CUBIC [19],

and recently-proposed algorithms like Copa [6], PCC [11] and PCC-

Vivace [12]. We test all the above algorithms in commercial cellular

networks covering our campus using Pantheon [48].
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Figure 11: (a) The number of detected users in each hour of

a day that have data communication with two base stations

( a 20 MHz one and a 10 MHz one). (b) The distribution of

wireless physical data rate of the detected users.

6.2 Micro-benchmark: Cell Status

In this section, we perform a micro-benchmark to present two im-

portant statistics of the cell tower: (1) the number of users that

have communicated with the cell tower in each hour and (2) the

distribution of wireless physical data rate of the users. We leverage

our control channel decoder to decode the control messages that

two base stations (a 20 MHz one and a 10 MHz one) transmit. We

conduct the experiments for 24 hours and count the number of

active users in each hour. We plot the result in Figure 11(a), from

which we see that each cell serves a large number of users during
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Figure 12: The distribution of throughput (a) and 95th per-

centile delay (b), of PBE-CC, BBR, Verus, and CUBIC (the

four “high throughput” algorithms), across 40 locations.

peak hours of a day, e.g., during the 12 to 20 hours period, the

average number of users per hour is 181 and 97 for 20 MHz and

10 MHz cell, respectively. Furthermore, the number of users varies

significantly within a day, i.e., maximum 233 and 135 users, mini-

mum 13 and zero users for 20 MHz and 10 MHz cell, respectively.

We note that the 10 MHz cell is turned off by the operator during

zero to three hour period, so we observe zero users. We also plot

the distribution of the wireless physical data rate of all detected

users, in Figure 11(b). We see that even though the users has diverse

data rates, a large portion are low-rate users, e.g., 77.4% and 71.9%

users have rate smaller than half of the maximum achievable data

rate (1.8 Mbit/s/PRB), for 10 MHz and 20 MHz cell, respectively. In

the following sections, we evaluate the performance of PBE-CC

working atop of these cells that serve large number of diverse users.

6.3 End-to-end Delay and Throughput

In this section, we investigate the delay and throughput perfor-

mance of PBE-CC achieved in a commercial cellular network.

6.3.1 Performance of Stationary Cellular Links. We investigate PBE-

CC’s performance on stationary cellular links.We build connections

between servers and stationary mobile users over which senders

transmit to their corresponding users for 20 seconds, recording

achieved throughput, packet delay, and arrival time in each flow.

We change the congestion control algorithm the sender adopts

and test eight algorithms sequentially. Since the capacity of the

cellular network varies when testing each algorithm, we repeat the

whole preceding test sequence (sequentially testing all algorithms)

five times at one location to provide a fair comparison of achieved

throughput, across different congestion control algorithms. Fur-

thermore, we conduct the foregoing experiment using different

phones, in order to measure performance with different numbers

of aggregated cells. We repeat these experiments at multiple indoor

and outdoor locations and at different times of the day, i.e., daytime

when the cell is busy, and late night when the cell is idle. In total,

we test 40 locations, covering all combinations of indoor/outdoor,

one/two/three aggregated cells and busy/idle links.

Comparison among high-throughput algorithms. As we will

demonstrate in the following section, PBE-CC, BBR, CUBIC, and

Verus achieve significantly higher throughput than the other four

algorithms we examine. We plot the distribution of the averaged

throughput and 95th percentile one way delay achieved by these

four algorithms, in Figure 12(a) and 12(b). We see that PBE-CC

achieves the highest throughput for most of the stationary links,

while simultaneously maintaining very low latency. Table 1 on

p. summarizes the performance improvement of PBE-CC over BBR

and Verus. PBE-CC achieves 2.3× average higher throughput than

CUBIC, and at the same time reduces 95th percentile delay by 1.8×.

Detailed comparison among eight algorithms. To provide a

detailed performance comparison among all eight algorithms, we

select six representative locations, and plot the 10th, 25th, 50th,

75th, and 90th percentile throughputs (averaged over every 100-

millisecond interval) and delay, for eight algorithms, in Figures 13

and 14. We have three observations from these figures. First, PBE-

CC achieves high average throughput, but also has somewhat high

throughput variance, since PBE-CC is able to match its send rate to

the varying wireless channel capacity. BBR achieves comparable

throughput with PBE-CC in all selected locations, but with higher

delay. Verus, a congestion control algorithm designed for cellular

networks, also achieves relatively high throughput in many loca-

tions, but introduces excessive packet delays. The performance of

CUBIC is highly unpredictable, alternating between high through-

put (but high delay) and low throughput (but low delay), as our

order statistics demonstrate. The other four algorithms, including

Copa, PCC, PCC-Vivace, and Sprout, have a large throughput dis-

advantage compared to PBE-CC. We plot the number of locations

at which each congestion control algorithm triggers the cellular

network to activate secondary cells for providing extra throughput

(maximum 30 locations, since we use Redmi 8 that uses only one

cell, in 10 locations), in Figure 15. We see that Copa, PCC, PCC-Vi-

vace, and Sprout use very conservative send rates, so the cellular

network disables carrier aggregation at most locations, resulting in

significant under-utilization of the available wireless capacity.

PBE-CC achieves a low delay and delay variance. Comparing

against BBR and Verus, two algorithmswith relatively high through-

put, PBE-CC incurs much smaller delays. However, PBE-CC has a

slightly higher latency than the four algorithms with low through-

put. Such a delay gap is mainly caused by cellular retransmissions:

as we have demonstrated in Figure 6(b), higher throughputs result

in a larger TB error rates, and thus more retransmissions. Therefore,

under schemes with higher throughput, slightly more packets incur

a multiple of eight millisecond retransmission delay.

Finally, we observe that PBE-CC has low variance in both de-

lay and throughput when cells are idle, as shown in Figures 13(d)

and 14(b). Without competing traffic and mobility, wireless capacity

becomes stable for a static user in an idle cell. PBE-CC then achieves

stable throughput and delay by accurately estimating this capacity.

Alternation between states. On average, PBE-CC spends 18%

and 4% of its time working in Internet-bottleneck state, for 25 busy

links and 15 idle links, respectively, which validates our assumption

that a connection traversing a cellular network is bottlenecked at

the cellular wireless link for most of the time.

6.3.2 Performance under Mobility. A major source of cellular wire-

less capacity variations arise from wireless channel quality vari-

ations, caused by client mobility. In this section, we investigate

PBE-CC’s performance under mobility. We conduct this experi-

ment at night when the cell is approximately idle to reduce the

capacity variations introduced by other random competing users. In

each test, we put the phone at a location with RSSI of −85 dBm for
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Figure 13: One way packet delay and throughput achieved by eight congestion control algorithms. The right and lower edge

of the box represents the 25% percentile of the achieved delay and throughput, respectively. The left and upper edge give the

75th percentiles. The two ends of the error bar gives the 10th and 90th percentiles. The intersection point of the horizontal

and vertical error bar represents the median of achieved delay and throughput.
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Figure 14: The oneway packet delay and throughput

achieved by eight congestion control algorithms in two dif-

ferent outdoor tests covering the busy and idle cell status.
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Figure 17: Delay and throughput achieved byPBE-CC (a) and

BBR (b) when the user is moving along the same trajectory.

the first 13 seconds, and then move it along a predefined trajectory

to another location with RSSI of −105 dBm in the next 13 seconds.

We move the phone back to the starting location (−85 dBm) with

a faster speed, taking about four seconds and put it there for 10

seconds. In total, each test takes 40 seconds. We repeat the same

process for each congestion control algorithm.

We present each algorithm’s achieved throughput and delay in

Figure 16, from which, we see that PBE-CC consistently achieves

low delay (95th percentile of 64 ms) and high average through-

put (55 Mbit/s). BBR achieves comparable throughput (55 Mbit/s)

with PBE-CC but suffers much higher delay (156 ms). CUBIC and

Verus achieve much lower throughput than PBE-CC (38 Mbit/s

and 41 Mbit/s) and also introduces high delay (296 ms and 467 ms).

Other algorithms, e.g., PCC, PCC-Vivace, Sprout, and Copa, have

low throughput, resulting in under-utilization of wireless capacity,

so mobility has a trivial effect on their packet delay.

To further demonstrate PBE-CC’s ability to track mobility, we

divide the 40-second experimentation period into 20 two-second

intervals and plot median throughput and delay of each interval

for PBE-CC and BBR, in Figure 17. We see that PBE-CC lowers

and increases its send rate accurately when the signal strength

decreases from 13 to 26 seconds and then increases from 26 to 30

seconds because of mobility, resulting in nearly zero buffering in the

network. On the other hand, BBR overreacts to the signal strength

decrease, reducing its send rate more than needed, because of its

inaccurate end-to-end capacity estimation. BBR also overestimates

capacity when the signal quality recovers at 30 seconds, causing

packet queuing and introducing excessive packet delay.

6.3.3 Performance under Controlled Competition. Besides mobility,

the competition betweenmobile clients for limited wireless capacity

is another major source of variations in network capacity. In this

section, we use controllable, on-off competing traffic to demonstrate

PBE-CC’s capability to track the time-varying wireless bandwidth

allocation caused by competition. Specifically, we start a PBE-CC

flow that runs for 40 seconds using a Redmi 8 phone. Every eight

seconds, we also start a four-second concurrent flow with a fixed

offered load of 60 Mbit/s from an AWS server, using a Xiaomi MIX3.

We conduct the experiments at night to make the possibility of

uncontrolled competition from other users remote. We repeat the
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Figure 19: Average throughput and delay of every received packet in a flow. PBE-CC’s rate

increase and decrease is more responsive, thus grabbing capacity faster and keeping delay

constant, respectively. In contrast, BBR suffers delay fluctuations.
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Figure 20: The oneway delay and throughput achieved by

eight congestion control algorithms for two concurrent con-

nections between one device and two remote servers.

experiment using different congestion control algorithms.

We plot each algorithm’s throughput and delay in Figure 18,

from which, we see that only PBE-CC can simultaneously achieve

high throughput and low latency. The average throughput of PBE-

CC is 57 Mbit/s, comparable with CUBIC at 58 Mbit/s, and Verus

at 56 Mbit/s, but slightly smaller than BBR at 62 Mbit/s. But the

average and 95th percentile delay of PBE-CC is 61 ms and 71 ms,

much smaller than BBR at 147 ms and 227 ms, CUBIC at 252 ms and

416 ms, and Verus at 263 ms and 403 ms. To further demonstrate

PBE-CC’s and BBR’s reactions to competing traffic, we also plot the

throughput (averaged over every 200 millisecond interval) and the

delay of all received packets, in Figure 19, where the shaded areas

represent the time periods when the concurrent competing traffic

generated by the MIX3 is present. We see that PBE-CC accurately

tracks the entrance of the competitor and lowers its sending rate

promptly, resulting in nearly no packet queuing. PBE-CC immedi-

ately grabs the idle bandwidth when the competing traffic finishes

its flow, maximizing the achieved throughput. In contrast, BBR

cannot timely detects the decreasing capacity caused by competing

traffic, resulting significantly enlarged delay.

6.3.4 Single device multiple connections. In this section, we eval-

uate how PBE-CC performs in the scenario where one device si-

multaneously starts multiple connections with different remote

servers. Specifically, we let the MIX3 start two concurrent flows

with two AWS servers, each running for 40 seconds. We repeat the

experiments using different congestion control algorithms, and plot

each algorithm’s throughput and delay in Figure 20. We see that

PBE-CC achieves high throughput and low delay for both flows.

The average throughput is 26 Mbit/s and 28 Mbit/s, and the median

delay is 48 ms and 56 ms, for the first and second flow, respectively.

Furthermore, PBE-CC fairly allocates the estimated capacity for

two flows so these two flows have similar throughput, while other

algorithms may result in unbalanced throughput for multiple flows,

e.g., BBR achieves 10 Mbit/s and 35 Mbit/s for the first and second

connection, respectively. We note that even though PBE-CC may

achieve a smaller throughput for a single connection compared to

other algorithms, e.g., the first connection comparing with BBR,

PBE-CC provides better fairness across connections.

6.4 Fairness

In this section, we evaluate the fairness of PBE-CC, focusing on the

case where the bottleneck is the cellular wireless link.

Methodology.Without knowing the base station’s resource allo-

cation algorithm and fairness policy, simulation-based experiments

cannot predict real-world cellular network behavior. We therefore,

evaluate PBE-CC’s fairness directly in a cellular deployment. To

eliminate the impact of background traffic, we conduct our experi-

ment at night when the cell is idle. We use the three phones as three

competing users, each setting up a connection with a AWS server.

The S8, Redmi 8 and MIX3 starts its flow at zero, 10, and 20 sec-

onds, and ends at 60, 50, and 40 seconds, respectively. These three

phones share the same primary cell but have different secondary

and tertiary cells (if configured), so the primary cell at 1.94 GHz is

the shared bottleneck of three connections. We record the allocated

PRBs to each user by the primary cell, when three connections are

running concurrently. Three connections get identical allocated

primary cell PRBs if they achieve a fair-share.

6.4.1 Multi-user fairness. We investigate the fairness between mul-

tiple PBE-CC flows with similar propagation delays. We setup three

AWS servers in the US and start three current connections via three

mobile phones, plotting the allocated bandwidth by the primary

cell to the three phones in Figure 21(a). We see that the PBE-CC

flows quickly converge to the fair-share of the bottleneck band-

width. Jain’s fairness index [24] is 99.97 and 98.73% with two and

three concurrent flows (100% is ideal), respectively. Since we cannot

prevent all associated users from using the cellular network, we

observe light background traffic generated by a unknown user, in

this experiment. The PBE-CC flow also reacts quickly, fairly sharing

the bandwidth with background users.

6.4.2 RTT fairness. We investigate whether PBE-CC can guarantee

a fair-share of wireless link capacity between multiple flows with
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Figure 21: The allocated PRBs (averaged over 50 subframes) by the primary cell to three mobile phones, when these three

mobile phones starts three PBE-CC flows with three AWS servers in US (a); three PBE-CC flows with two AWS servers in US

and one AWS server in Singapore (b); two PBE-CC flows with one BBR flow (c); two PBE-CC flows with one CUBIC flow (d).

significant differences in propagation delay. We use three mobile

phones to build concurrent connections with three AWS servers:

one in Singapore (average RTT of 297 ms) and two in the US (aver-

age RTTs of 52 ms and 64 ms). We plot the the primary cell allocated

PRBs for these connections in Figure 21(b). We see that the all three

PBE-CC flows with significant propagation delay differences obtain

similar allocated bandwidths. Jain’s fairness indices are 99.74% and

99.45% with two and three concurrent flows, respectively.

6.4.3 TCP friendliness. A common requirement from new conges-

tion control schemes is the capability of fairly sharing the available

bandwidth with existing congestion control algorithms like BBR

and CUBIC.We investigate the performance of PBE-CC in two cases:

two PBE-CC flows coexisting with one BBR flow, and two PBE-CC

flows coexisting with one CUBIC flow. Figures 21(c) and 21(d) depict

allocated PRBs for three connections in these cases, showing that

PBE-CC shares bottleneck bandwidth equally with both CUBIC

and BBR flows. Jain’s fairness index is 99.96% and 98.52% with two

and three concurrent flows in Figure 21(c), and 99.95% and 98.34%

with two and three flows in Figure 21(d). The base station fairness

policy prevents one user from grabbing all the bandwidth. Though

CUBIC and BBR may aggressively increase their sending rate, the

base station limits the total bandwidth they can obtain and forces

them to share with other concurrent flows.

7 DISCUSSION

Power consumption. In the connected state, a mobile device must

keep its radio on and decodes the control channel to check whether

the base station has data for it or not in each subframe. Therefore,

PBE-CC does not turn the radio of mobile device on for any extra

time than necessary currently and thus introduces no additional

power costs. The small computational overhead PBE-CC introduces

is that the mobile device may need to decode control messages that

are not transmitted to it. But, the number of extra control messages

inside each subframe the device needs to decode is very small, since

our experimental results shows that there are less than 4 control

messages inside more than 95% subframes. Furthermore, the control

messages are very short (less than 70 bits), so that decoding one

message only involves small extra computational overhead.

Packet buffering. PBE-CC works at or very close to the Kleinrock

TCP operating point [26, 27], which minimizes buffering, minimiz-

ing the delay. In practice, it could be beneficial to buffer some bytes

in the base station, which slightly increases delay but helps to im-

mediately utilize increases in connection throughput, before the

sender modulates its sending rate (congestion control has at least a

round trip time delay). In the future, we plan to extend PBE-CC to

enable the sender/app to adaptively adjust the buffering inside the

network, trading off increased delay for increased throughput.

Fairness policy. Currently, PBE-CC fairly shares idle bandwidth

among all active users in the connection start state. In the future,

PBE-CC can be modified to incorporate other fairness policies, e.g.,

active users with lower physical data rate grab larger bandwidth.

PBE-CC’s control algorithm adapts to an arbitrary fairness policy,

achieving equilibrium in the steady state.

Misreported congestion feedback. PBE-CC relies on the mobile

user to report the estimated capacity back to the server so it is

possible that a malicious user may report a data rate higher than

the network can support, triggering overwhelming number of data

being injected into the network, causing catastrophic impact. In

future work, PBE-CC can be extended to detect such malicious

users via implementing a server side BBR-like throughput esti-

mator, which estimates the currently achieved throughput purely

with timestamps of packets being sent and acknowledged, without

any involvement of the mobile user. By comparing the achieved

throughput and capacity reported by the user, PBE-CC identifies

any user who consistently reports a rate higher than the achievable

throughput as a malicious user.

8 CONCLUSION

PBE-CC is the first end-to-end congestion control algorithm to

seamlessly integrate mobile client-side wireless physical layer ca-

pacity measurement into its design, which is crucial for the multi-

cell design of 4G and 5G wireless networks. Our rigorous per-

formance evaluation featuring multi-locations, mobility, varying

background traffic levels, and varying RTTs shows that PBE-CC

outperforms many leading congestion control algorithms in both

latency and throughput. PBE-CC is also immediately deployable,

with modifications required solely to content servers and mobile

clients. This work does not raise any ethical issues.
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