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Abstract—With the exponential growth of the demand for
wireless communications, people are faced with the shortage of
spectrum resources. To tackle this problem, researchers consider
about the further usage of TV channels with low occupancy,
referred as white spaces. In this paper, we propose a mobile
platform based indoor white space exploration method, namely
MISEN, to profile the white space distribution inside a building.
In this method, we design a tensor completion based algorithm
based on the framework of Alternating Direction Method of
Multipliers (ADMM) to recover a complete spectrum map, where
we consider the linear dependency of white space information.
Moreover, we build a prototype of MISEN and evaluate the
performance in real scene. It is shown that MISEN senses on
average 18.7% more white spaces with 20.0% less false alarm
rate than the state of art methods.

Index Terms—indoor white space, tensor completion, mobile
sensing

I. INTRODUCTION

With the rapid growth of wireless communication tech-
niques, the problem of spectrum shortage has become increas-
ingly critical. In 2008, the Federal Communications Commis-
sion (FCC) issued a rule, granting unlicensed devices with the
access to vacant TV spectrum. Those spectrum is also referred
as TV white spaces or simply white spaces. Since then, people
have paid more and more attention on the exploration and
utilization of TV white spaces.

Many of the existing works [1]–[3] focus on outdoor white
space exploration. However, nearly 70% of wireless spectrum
usage takes place indoor [4], which makes indoor cases much
more important. In this paper, we propose a method to profile
the white space distribution inside a building. There exist some
efficient methods, such as WISER [5] and FIWEX [6]. Firstly,
in those methods, the linear dependency among the temporal
dimension is not fully utilized. Secondly, those previous meth-
ods require much training for an accuracy sensing. Thirdly, we
can further reduce the cost of white space exploration with
mobile sensing.

Considering those limitations above, we propose a mo-
bile sensing based indoor white space real-time explo-
ration method, namely MISEN (Mobile Indoor Spectrum
ExploratioN). Mobile sensors are used to explore white spaces
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Fig. 1: System architecture of MISEN

inside a building. As a consequence, the number of required
sensors will be greatly reduced.

In previous works, it is shown that spectrum information
is stable in a short period of time [6]. Motivated by this
premise, through combining the latest time slice with his-
torical ones, the dependency among temporal dimension will
be considered. In MISEN, under-sampled spectrum data is
organized as tensors with time-space-frequency dimensions.
An Alternating Direction Method of Multipliers (ADMM)
based tensor completion algorithm [7] is designed to recover
a complete white space distribution map.

The contributions are summarized below:
• We propose MISEN, a Mobile Indoor Spectrum Ex-

ploratioN method. This method achieves high efficiency
with extremely low cost. We design a prototype of this
mechanism and conduct experiments in real scene. With
limited human supervision, the mobile sensors are able
to function automatically.

• We design an ADMM based tensor completion algorithm
to reconstruct a white space distribution map. The al-
gorithm exploits the historical information and considers
the influence of linear dependency among all three di-
mensions. Our method is the first mechanism to apply
ADMM framework in white space exploration.

• We perform a proof-of-concept experiment to evaluate
the system performance. Tested within the same data set,
MISEN is able to identify more white spaces with less
error rate than static sensing methods.

II. OVERVIEW OF MISEN

In this section, we will introduce an overview of MISEN.
As shown in Fig.1, MISEN consists of three parts: central
host, indoor localization module, and mobile spectrum sensing
module. For the first one, while traversing around indoor
environments, mobile sensors collect white space information
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which will be transmitted to the central host at regular inter-
vals. At the same time, indoor localization module tracks down
the route of mobile sensors and sends them to the host. By
combining under-sampled spectrum data with corresponding
locations, the central host will reconstruct a white space
distribution map. Clients are allowed to acquire white spaces
according to their real-time positions.

A. Indoor Localization Module

In MISEN, the indoor localization module is used to obtain
real-time positions of clients and record the tracks of mobile
sensors, which are sent to the central host in chronological
order. In MISEN, we adopt a commercial indoor localization
product, which utilizes ultra-wide-band (UWB) signals. Note
that the working frequency of this module is 3.8GHz - 5.8GHz,
which will not interfere with the wireless signals in TV
frequency bands.

B. Mobile Spectrum Sensing Module

For indoor white space exploration, nearly all existing
systems utilize static sensing, which is somewhat inefficient
due to the failure in exploiting the redundancies in time
dimension [6]. Hence, it is reasonable to leverage mobile
sensing on the ground to introduce variety in time dimen-
sion to spectrum sensing information. Moreover, with mobile
sensing, the amount of required sensors will decrease a lot,
since a few ones will traverse the whole indoor environment.
However, with the reduction of sampling rate, it is even more
challenging to reconstruct complete spectrum information. We
illustrate the reconstruction algorithm in Section III. Plus, we
build a prototype of the mobile spectrum sensing module,
by mounting a spectrum sensor and a localization tag on a
sweeping robot, as shown in Fig 2. Details of the prototype is
presented in Section IV.

Fig. 2: Mobile sensing module

Another challenge is that the collected spectrum information
at different channels and positions is asynchronous, due to
the mobility of sensors. According to previous work [5],
indoor white spaces maintain stable during a short period of
time, which stands for the validity of mobile sensing. Hence,
MISEN utilizes both real-time data and historical data to solve
the data reconstruction problem.

Fig. 3: Incomplete tensor

C. Central Host

The central host is responsible for two tasks: data parsing
and spectrum map reconstruction. For the first task, recorded
tracks and sampled spectrum information are transmitted to
the central host periodically and parsed into an incomplete
3D tensor. For the second task, the host takes the incomplete
3D tensor as input, and then perform a data reconstruction
algorithm. The form of input is shown in Fig.3, where the
orange blocks represent sampled entries, whereas the grey ones
are missing entries. After reconstruction, the latest time slice
will be treated as the real-time white space distribution map.
Consequently, the central host returns a list of white spaces
when receiving requests for white spaces.

In the experiment, the frequency band of concern is
470MHz-806MHz, which is the Chinese digital television
band, and the bandwidth of a TV channel is 8MHz. For ease
of expression, we use I1, I2 and I3 to represent the number
of channels, time slices and profiled locations respectively. In
addition, some important definitions are introduced below.

Ground truth tensor (GT) is a I1× I2× I3 tensor, which
contains the ground truth information of signal strengths,
denoted by X .

Loss pattern (LP)is a I1× I2× I3 tensor, which indicates
sampled entries, denoted as Ω. For channel j, location i and
time slice k,

Ω(i, j,k) =

{
1 If this entry is sampled,
0 Otherwise.

(1)

Measurement tensor (MT) is a I1× I2× I3 tensor, which
indicates the signal strengths at those sampled entries and 0 at
the others, denoted as M . For channel j, location i and time
slice k,

M (i, j,k) =

{
X (i, j,k) If this entry is observed,
0 Otherwise.

(2)

Plus, M = Ω◦X , where ◦ refers to Hadamard product.
Reconstructed tensor (RT) is aI1× I2× I3 tensor, which

is generated by applying tensor completion algorithm on
measured tensor M , denoted as X̂ .
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The latest white space distribution is contained in X̂ (:, :
,1) (MATLAB expression). A channel is white space if its
signal strength is larger than a threshold, and vice versa. In
order to protect the licensed user from being interfered, as well
as improve the efficiency of data reconstruction, a protection
range PR is introduced here. Thus, the white space distribution
map is defined as following.

MAP(i, j) =

{
1 if X̂ (i, j,1)≥ threshold−PR.
0 if X̂ (i, j,1)< threshold−PR.

(3)

MAP(i, j) = 1 means channel j at location i is occupied,
otherwise vacant.

III. DATA RECONSTRUCTION ALGORITHM

In this section, we will present the tensor reconstruction
algorithm. Tensor completion from incomplete measurements
has been widely studied [8], [9], and applied to related
domains, such as computer vision [7], [10].

Researchers [11] proposed a low rank tensor completion
algorithm LRTC and several variations to recover images with
random masks. However, we cannot use LRTC in MISEN
directly, otherwise the temporal dependency will be neglected.
Considering spatial dependence and channel dependence [6],
we design a tensor completion algorithm, which is proved to
be accurate on exploring indoor white spaces.

A. Notations and Definitions

We use upper case flourish letters for tensors, e.g. X ,
upper case letters for matrices, e.g. X and lower case let-
ters for entries, e.g. x. An n-mode tensor is defined as
X ∈ RI1×I2×···×In , whose entries are expressed as Xi1,··· ,in ,
1 ≤ ik ≤ Ik, 1 ≤ k ≤ n. There are two general operations on
tensors: unfold and fold. The first one converts a tensor into
a matrix, unfoldk(X ) = X(k) ∈ RIk×(I1···I(k−1)I(k+1)···In). Taking a
3D tensor X as an example,

X(1) = [X (:, :,1),X (:, :,2), . . . ,X (:, :, I3)] ∈ RI1×(I2I3)

X(2) = [X (:, :,1)T ,X (:, :,2)T , . . . ,X (:, :, I3)
T ] ∈ RI2×(I1I3)

X(3) = [X (:,1, :)T ,X (:,2, :)T , . . . ,X (:, I2, :)T ] ∈ RI3×(I1I2)

The opposite operation fold converts a tensor into a matrix,
foldk(X(k)) = X , which is the inverse operation of unfold.
Suppose X =UΣV T , we define a deflation function on X as,

Fλ (X) =UΣλV T (4)

where Σλ = diag(max(σi−λ ,0)), σi is the i-th largest singular
value of matrix X. The trace norm of a matrix X is denoted as
‖X‖∗ = ∑i σi(X). The inner product of matrices is defined as
〈X ,Y 〉= ∑i, j Xi jYi j. The Frobenius norm of a tensor is denoted

as ‖X ‖F =
√

∑i jk |x2
i jk|.

B. Tensor Completion Details

Given Ω and M , the reconstruction algorithm will return a
approximate X . The principle of this algorithm is to minimize
the rank of X̂ while maintaining the known elements. Since
the function to solve the rank is non-convex, we use the trace
norm [12], which is the closet approximation to the rank.

X̂ = min
X

: ‖X ‖∗
s.t. : XΩ = MΩ

(5)

However, computing the rank for a tensor with a mode larger
than 2 is an NP-hard problem, there is no expression for the
convex envelop of the tensor rank. Thus, the definition of
tensor trace norm is proposed based on matrix trace norm.

‖X ‖∗ =
N

∑
i=1

αi
∥∥X(i)

∥∥
∗ ,αi ≥ 0 (6)

where parameters αi adjusts the weights of each unfolded ma-
trix. With this definition, the problem in (5) will be rewritten,

min
X

:
N

∑
i=1

αi
∥∥X(i)

∥∥
∗

s.t. : XΩ = MΩ

(7)

To break the dependence among each unfolded matri-
ces, extra matrices M1,M2, . . . ,Mn are introduced, where
X(i) = Mi,1 ≤ i ≤ n. Constraints are further relaxed as∥∥X(i)−Mi

∥∥2
F ≤ ti. An equivalent formulation with positive

parameters βi is converted from (7).

X̂ = min
X ,Mi

:
n

∑
i=1

αi ‖Mi‖∗+
βi

2

∥∥X(i)−Mi
∥∥2

F

s.t. : XΩ = MΩ

(8)

Moreover, considering the linear dependence among three
dimensions, the problem is expanded as following,

X̂ = min
X

:
n

∑
i=1

αi ‖Mi‖∗+
βi

2

∥∥X(i)−Mi
∥∥2

F +‖CiMi−Ci0‖2
F

s.t. : XΩ = MΩ

(9)
where Ci and Ci0 represent the constraints for three modes.
According to the linear dependence Mi ≈ wi0 +∑

K
k=1 wik Mik ,

‖CMi−C0‖2
F should be small. The choice of Ci and Ci0 will be

determined on the same way as [6]. An augmented Lagrangian
function is defined,

L(X ,M1, · · · ,Mn,γ1, · · · ,γn)

=
n

∑
i=1

αi ‖Mi‖∗+ 〈X(i)−Mi,γi〉+
βi

2

∥∥X(i)−Mi
∥∥2

F

+‖CiMi−Ci0‖2
F

(10)

Solving X . When all other variables are fixed, the optimal
X is obtained by solving the sub-problem. According to the
solution proposed in [13],

Xi1,··· ,in =


(

∑
n
i=1 βi f oldi(Mi)

∑
n
i=1 βi

)
i1,··· ,in

, Ωi1,··· ,in = 0

Mi1,··· ,in , Ωi1,··· ,in = 1
(11)
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Solving Mi. After obtaining the optimal X , we can further
derive the optimal Mi by solving another sub-problem.

min
Mi

: α ‖Mi‖∗+
βi

2

∥∥Mi−X(i)
∥∥2

F +‖CiMi−Ci0‖2
F (12)

The solution to this problem is,

Mi = Fλ (X(i)),λ =
αi

βi
(13)

We apply the framework of Alternating Direction Method
of Multipliers (ADMM), which is efficient in solving opti-
mization with multiple non-smooth terms [14]. The parameters
will be updated iteratively. A non-negative superscript number
with parentheses is used to denote the amount of iterations.
For example, X (k) means X at iteration k.

M(k+1)
i = argmin

Mi
L(X ,M(k)

1 , · · · ,M(k)
n ,γ

(k)
1 , · · · ,γ(k)n )

X (k+1) = arg min
X ∈P

L(X ,M(k+1)
1 , · · · ,M(k+1)

n ,γ
(k)
1 , · · · ,γ(k)n )

γ
(k+1)
i = γ

(k)
i − (M(k+1)

i −X
(k)
(i) )

where P is a convex set, P = {X ∈ RI1×···In |XΩ = MΩ}
maintaining known elements. The first two steps will be
computed according to (13) and (11). The pseudo code of
the complete algorithm is shown below:

Algorithm 1 ADMM Based Tensor Completion Algorithm

Input: M with MΩ = XΩ and K
Output: X

Set XΩ = MΩ and X
Ω
= 0

for k=0 to K do
for i=0 to n do

λi =
αi
βi

Mi = Fλi(X(i)+
1
βi

γi)
end for
X

Ω
= 1

n (∑
n
i=1 foldi(Mi− 1

βi
γi))Ω

γi = γi− (Mi−X(i))
end for
return X

IV. EXPERIMENT SETUP

We build a proof-of-concept prototype of MISEN and con-
duct experiments in real scene to evaluate the mechanism. In
this section, we will introduce the settings of our experiments.

The equipment is grouped into three parts: indoor local-
ization module, mobile sensing module and static sensing
module. The localization module is shown in Fig.4. Received
positions are transmitted to the computer consistently.

Fig.2 shows the mobile sensing module from different
views. From the bottom up, the components are an iRobot
Create 2, a USRP N210 [15], a localization tag, a portable
battery bank and a log periodic PCB antenna (400-1000 MHz).
In the experiment, two mobile sensors are used in total, which
helps collect spectrum information from different positions
synchronously.

Fig. 4: Indoor localization module

As for the static sensing module, ten sets of hosts and
spectrum sensors are deployed to acquire the ground truth
information. The timing of start-up across different hosts is
synchronized by using the ”crontab” command in Ubuntu OS.

We conduct white space measurements on the 3rd floor
of our lab building for several weeks. The layout plan of
the experiment site is shown in Fig.5, where red, blue and
green marks indicate profiling points, static sensing points and
localization base points respectively.

Fig. 5: Experiment site

In this experiment, we set the threshold as -83.5 dBm/8
MHz. Furthermore, we set up the gain of the antenna as 0
dBi.

V. PERFORMANCE EVALUATION

We will discuss the performance evaluation of MISEN in
this section. We focus on the time span of a tensor, which
includes both choices of time slice length and the amount of
time slices. Plus, We compare the performance of MISEN with
existing systems, including WISER [5] and FIWEX [6]. The
experiment settings for those two mechanisms are similar to
ours. Please refer to those papers for more information.
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A. Experiment Settings

We choose 40 profiled points in the experiment. The white
space threshold of signal strength is set up as -83.5dBm/8MHz,
which is higher than that in WISER [5]. Although the risk of
sensing false white spaces increases, MISEN still achieves a
higher accuracy.

For the comparison with existing methods, FA Rate and WS
Loss rate are utilized to determine the accuracy and efficiency
respectively. These two metrics are defined in [5]:
• False Alarm Rate (FA Rate): the radio between the

false vacant channels an all identified vacant channels,
including false vacant channels and true vacant channels.

• White Space Loss Rate (WS Loss Rate): the ratio
between the false occupied channels and all actually
vacant channels, including true vacant channels and false
occupied channels.

B. Influence of Tensors’ Time Span

In this method, a major factor that influences the perfor-
mance of MISEN is the total time span T of a tensor. With a
longer time span T , more spectrum information is contained
in a tensor. However, we cannot increase the time span of
tensor without bound, since larger time span means more data
processing time. MISEN would fail to output a white space
distribution map in real-time with a tremendous amount of
data to process. Thus, in this subsection, we will discuss the
influence of the total time span T on the performance of
MISEN.
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Fig. 6: Performance of MISEN with different amount of time
slices

The total time span T depends on two factors: the amount of
time slices, and time slice length. Firstly, we fix the amount
of time slices and then change the time slice length. Fig.6
shows the FA Rate and WS Loss Rate respectively for a fixed
time slice length. The FA Rate curve goes down rapidly with a
small amount of time slices. Then the pace of decline gradually
slows down. While the WS Loss Rate curve presents a slower
decline.

Secondly, we fix the amount of time slices and then alter the
time slice length. Fig.7 illustrates the system performance with
different time slice length, where the amount of time slices is
set as 4. Both FA Rate and WS Loss Rate go down as the
increasing of time slice length. Combining these two factors,
larger time spans with richer white space features will leads
to a better reconstruction accuracy.
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Fig. 7: Performance of MISEN with different time slice lengths

C. Comparison with FIWEX and WISER
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Fig. 8: Comparison with WISER and FIWEX

To our best knowledge, WISER and FIWEX are the most
lately indoor static sensing methods. For those methods, the
system performance is mainly determined by the amount of
sensors. For MISEN, the mobile sensing method, the perfor-
mance lays on the total time span. To compare them fairly,
we introduce a concept of data completeness rate, defined by
the portion of sampled entries.

The comparison results are illustrated in Fig.8. MISEN
outperforms both WISER and FIWEX, which on average
detects 18.7% more indoor white spaces with 20.0% less false
alarm rate than FIWEX, and 46.1% more white spaces with
64.9% less false alarm rate than WISER. We also conduct data
reconstruction on the whole dataset, which lasts for more than
20000 minutes. The time varying performance of these three
methods is shown in Fig.9. We can see that False Alarm Rate
and White Space Loss Rate of MISEN are lower than static
sensing methods steadily.

VI. RELATED WORK

Since FCC granted unlicensed devices with the access to
vacant TV channels, people have paid more and more attention
to TV white spaces. Researchers studied the white space
characteristics on spatial variation, spectrum fragmentation
and temporal variation [16]. A lot of outdoor white space
measurements were performed in metropolitan cities, such as
Chicago [1], Guangzhou [2], Singapore [3].

There are also plenty of works focusing on the applications
of TV white spaces. Researchers [17] proposed a protocol for
best channel selection from the geo-location database. Based
on white space utilization, an enhanced cognitive radio net-
work (E-CRN) [18] was proposed for 5G wireless networks.
A scalable sensor network architecture: Sensor Network Over
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Fig. 9: Time varying performance of MISEN, FIWEX and WISER

White Spaces (SNOW) was proposed in [19]. Researchers also
make efforts to utilize active TV channels, such as WATCH
[20], a system to enable WiFi transmission in active TV
channels.

For indoor cases, Ying et al. [5] proposed the first indoor
white space identification system WISER, applying a channel-
location clustering based algorithm. Considering the depen-
dence on both space and frequency, Liu et al. [6] presented
FIWEX, a cost-efficient indoor white space exploration mech-
anism based on compressed sensing algorithm. However, both
of them do not consider the temporal dependence. Motivated
by this observation, we propose a mobile indoor spectrum
exploration mechanism, MISEN.

We use tensor completion method to recover unsampled
spectrum data. Tensor completion has been widely studied in
the past few years [8], [9], [21], and was applied to lots of
fields, including computer vision [7], [10]. Specially, Zhang
et al. [7] put forward novel methods for video reconstruction
based on tensor-Singular Value Decomposition and tensor
nuclear norm.

VII. CONCLUSION

In this paper, we creatively utilize mobile sensing for indoor
white space exploration. Furthermore, we propose a mobile
indoor white space exploration method, namely MISEN.A
proof-of-concept prototype is evaluated in real scene. The
results illustrate that MISEN yields a superior performance
over existing methods, detecting 18.7% more white spaces
with 20.0% less false alarm rate than the state of art solution.
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